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in the study of optimal processes one usually considers problems [II for 

which the variational formulation leads to problems related to those of 

Lagrange, Mayer and Bolza in the calculus of variation [2,3.41. Their 
fuactionals may depend on the values of the coordinates of the endpoints 
of the time interval under consideration. 

In this work variational problems on the optimization of control pro- 
cesses in which the functionals depend on the values of the coordinates 
at interior points of this interval are considered. 

1. Formulation of the problem. It is assumed that the behavior 

of the optimizing system is described by a system of ordinary differ- 

ential equations of the following type 

gr=ks-fs(51,...,~~,Ul,...,, u,,t)=O (s = 1, . . . ) n) (1 .I) 

It is also assumed that the functions uk( t), (k = 1, . . . , m) are con- 

nected by r finite linear relations 

$/( = 4+ (%, - - - , &7I, t) = 0 @=I,..., r) (1.2) 

The variables x,(t) will be called coordinates, while u,(t) will be 

referred to as control parameters [l]. 

With the aid of the relations (1.2) one can perform a transition from 

closed to open regions of admissible variations of the control para- 

meters. ‘Ihe details of this transformation are given in [5,6]. 
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In what follows, it will be assumed that in the (n + m + l)-dimen- 
sional space of the variables x1, . . . , xm, .ul, . . . , u,,, and t there 
exists an open region R, of admissible variations of the coordinates 
x,(t), of the control parameters uk(t), and of the time t; in this 
region the functions f, and yk are continuous, and possess continuous 
partial derivatives up to, and including, the third order 141. 

Let us consider the interval t0 < t < ttiel = T, belonging to the 

region R, a&let us concentrate our attention on q interior points 
t = ti (i = 1, . . . ) q) for which the following relations hold: 

‘PI 1z (to), to, 2 (Q t,, - * - 9 2 (tfd, t,, z FL Tl = 0 (1.3) 

(1=1, . . . . P < (n + 1) (9 + 2) - 1) 

For the sake of brevity, 

x”(ti) by the symbol x(ti). 
we have here denoted the set xl(ti), . . . . 

We shall assume that the functions 91 are continuous, and that they 
have continuous third order derivatives in the closed region R, of the 
(n + 1) x (q + 2) variables xl(to), . . . . x,(tO), t,; xl(tl), . . . . x,(t,), 

t1; . . . . xl(tq), . . . . x 

I 

(t,), 
assume that the matrix 41 

tq xl(T), . . . . x,(T), T. We shall also 

aQ1 faQ[; aQ[ ;acP, i 
-.-,-.A_:. 

a2, (to) i at, : az, (fl) : at, : (1.4) 

is of rank p, equal to its number of rows. ‘Ihe elements of the Zth row 
of this matrix are the partial derivatives of the function Q~ with re- 
spect to its arguments. 

An element (X, u, t) = (X1, . . ., xn, ul, . . ., ua, t) of a curve in 
the indicated (n + m + l)-dimensional space will be admissible if it be- 
longs to the region R,. The set (x(t,), t,,, x(t,), tl, . . . . x(79, 79 
will be called an end-element of the curve. It is determined by both the 
intermediate and the end values of the coordinates and time. If the end- 
element belongs to the region R, it too is called an admissible element. 

Points of discontinuity of the control parameters uk(t) will be 
called corner points of the curve. ‘Iheir number is assumed finite in the 
interval to < t < T. A curve with a finite number of corner points in 
the interval t0 < t \<T, all elements (including the end-elements) of 
which are admissible, will be called an admissible curve. 

‘lhe following problem of optimization of control will be studied. 

It is required to select from among all admissible curves, satisfying 
(in the interval t,<t<7’) the equations (1.1) and (1.2), and at the 
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points t = ti (i = 0, 1, . . . . 4 + 1)) the relations (1.3), that curve 
which makes the functional 

(1.5) 

J = g [z (4J, 4J, 2 011, t,, - * - t 

a minimum. 

The arguments of the function g are the same values Xs( ti) of the co- 
ordinates xs( t) at the points t = t i which occur in the function 91, ‘lbe 
problems on the maxima can be reduced to problems on the minima by a 
change of the sign of the functional. lhey will not be considered sepa- 
rately. 

The formulated problem differs from that of Mayer and Bolza of the 

calculus of variation in that the quantities n,(ti), (s = 1, . . ., n; 

i=l, *.., q) enter into the relations (1.3) and into the functional 
(1.5). They correspond to the points t = ti interior to interval 

q,\<t\<T. 

Such problems arise in the construction of optimal controls when the 
criterion for an optimum is taken to be the deviation of the system from 
the equilibrium position at some fixed instant of time t = tl, under con- 
ditions of the type [5,61 

‘Pr Ix (4A 43, x (T), Tl = 0 

It is assumed here that t,, < tl < T. ‘Ihe problem on the minimum (or 
maximum) of the deviation of a system, and many other problems, lead to 
an analogous formulation. 

It should be noted that the Mayer-Bolza problem, considered in [6] , 
is a particular case of the one described here, and that it can be ob- 
tained from the present one by setting q = 0. 

2. Condition for the stationary state of the functional .T. 
Let us consider a curve E satisfying the equations (1.1) and (1.2). We 

shall assume that on this curve the matrix [6] 

is of rank r. (‘Ibe element in the kth row and Pth column is the partial 
derivative ayk /a?. ) Furthermore, we shall assume that on the given 
curve the following “conditions of non-tangency” hold 
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ag + ; aql ___ k (ti) # 0 
az, Ui) 

(I=I,...,p) 
Cr=l 

(2.1) 

Under these conditions, one can prove lemmas on the inclusion of the 

curve E in a one-parameter, or many-parameter, family of comparison 

curves satisfying the equations (1.1) and (1.2). ‘Ihe contents of the 

lemmas coincide almost with those given by Bliss [41, and they will not 

be reproduced here. 

Let us suppose that there exists a curve E which makes the functional 

J a minimum. On the basis of a lemna on the inclusion, the curve can be 

included in a (p + l)-parameter family of comparison curves, and it can 

be made to belong to this family when the parameter has the value zero. 

Forming the total differential of this family, and repeating arguments 

analogous to those given in 141, we can prove that the first necessary 

condition for the minimum of the functional J is fulfilled on this curve. 

This condition is known as the rule of multipliers, or the condition of 

stationary state for the functional J. 

Introducing into the consideration the function [6I 

k=l a=1 

P 

where 

H = HA + HP = 5 hsf, + i ~,$,‘? 
s=o k=l 

owl=- 1) 

(2.3) 

(2.4) 

one can express this condition in the form of the equation hl = 0, in 

which Al stands for the total variation of the functional I, which has 

the form 

(2.5) 

The relation Al = 0 must be satisfied on every curve which makes the 

functional J a minimum. ‘Ihe function h,(t) (s = 1, . . . , n) and pk(t) 

(k = 1, . ..) r) cannot vanish simultaneously at any point on the 

interval t0 < t < T. 

Let us now try to obtain the explicit form of the necessary condition 

for the stationary state of the functional J, which is usually used in 

solving the problem on the optimization of control processes. Jn order 
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to simplify the presentation, let us assume first of all that the inter- 

val t, < t \<l’ contains only one point t = tl where condition (1.3) is 

satisfied. 

We shall assume 

trol parameters in 

I can be expressed 

that there are no points of discontinuity of the con- 

this interval. Under these assumptions, the functional 

in the form 
(2.6) 

Forming its total variation AI, we obtain the expression t51 

AI= A<p- B, (to) b (4)) - t%l &l + (2.7) 

‘lhe superscripts minus and plus indicate here the left side and the 

right side limits of the functions involved; where no misunderstanding 

can arise, these symbols are omitted. Further, we have made use of the 

notation 

&H = i ‘e&x,+ s z&u, 
84 k=l 

The coefficients of 6ti on the right-hand side of the equation (2.7), 

can be transformed with the aid of the relation (2.4) into the form 

i ha (ti) ka (ti) - (H)li = (fJi* 6ti (2.10) 

s-1 

Integration by parts yields 

ti n 

12 
h,llk~dt = i X,6xz 

k-1 
84 a=1 

*i G n 

- !2 &,dt (2.11) 

k--l li_-1 a==1 
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Substituting the expressions (2.8) to (2.11) into the relations (2.5) 

and (Z.?), we obtain 

‘Ihe analysis of this expression is analogous to the one described in 

[5] and leads to the following result. On a curve which makes the func- 

tional J a minimum, the following equations must hold 

a,+ $0, m 
(s= t I - I., n)t q= 0 (k=I,...,m) (2.13) 

8 

the end conditions 

h, (to) - --.f!L = 0, 
ax, Go) 

h, (T) + &+j r= 0 (s=1,.. 

(~)f~ + 2 = 0, (If; a9 0 T---g%= 

and the Erdmann-Weierstrass condition 

h,(Q - L'(tr) +&-) = 0. (s = 1, . . ‘, n) 

s1 - (&‘ + (H’)t, = 0 

. , n) (2.14) 

(2x3) 

(2.16) 

In the construction of the optimum control conditions one must also 

use the equations 

L+H 
h-gq =o (s=l,...,n), +=o (k =I*...,r.) (2*17) 

x 

which are equivalent to the equations (1.1) and (1.21, the relations 

(1.3), and the equations 
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%” (Q - z*+ @I) = 0, (s = 1,. . . , n) (2.18) 

that reflect the continuity of the coordinates r,(t) at the point t = tl. 

We note that in this problem, just as in the Mayer-Bolza problem [6I, 

one must make a distinction between the functions x,(t), A,(t), u,(t) 
and am, and the equations (2.14) and (2.17) in the distinct subinter- 
vals t,<<<rt, and t,< t<Tof the interval t,\(t<T. Let us agree 
to denote with a superscript minus the functions which belong to the 
first one of these intervals, and with a superscript plus the functions 
belonging to the second interval. Then we can obtain the following re- 
sults. 

For the determination of the 4n t 2m + 2r functions x,*(t), As*(t), 
u,*(t), and p,*(t) there exist the 2n + 2m equations (2.131, and the 
2n + 2r equations (2.17). In the solution of the 4n differential equa- 
tions there appear 4n arbitrary constants. For the purpose of finding 
them in addition to the p multipliers p1 and the quantities t,,, tl and T 
one can use the relations (1.3), (2.141, (2.151, (2.16) and (2.181. l'heir 
number is also equal to 4n + p + 3. 

Assuming that the interval t,, <t \<T contains only one point, t = t*, 
of discontinuity of the control parameters UC(t), and repeating the pre- 
vious arguments, we can derive the equations (2.13) with the end condi- 
tions (2.14) and (2.15), and the Erdmann-Weierstrass conditions 

L- (q - A‘+ (t*> = 0 (s = 1,. . . ) n), W)t* - (N+)t. = 0 (2.19) 

If one assumes that there is only one point t = tl* in the interval 
to <t <T, at which the condition (1.31 is satisfied, and at which the 
control parameters are discontinuous, then one obtains the equations 
(2.13) and the relations (2.14) to (2.16). 

Less restrictive assumptions in regard to the number of points of the 
type t = tir and of points of discontinuity of the control parameters 
u,(t), will not change the above listed results. They can, however, com- 
plicate the establishment of these results. 

A comparison of the equations (2.16) and (2.19) shows that the points 
t = ti at which relation (1.3) holds, are quite different from the 
points t = t* where the control parameters uk(t) are discontinuous. At 
the first type of points there can occur a discontinuity of the multi- 
pliers A?(t) and of the function H. At any point t = t*, these functions 
are continuous. 
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The function H will be continuous at a point t = ti in that case when 
the quantity ti does not appear in the relation (1.3) explicitly. If all 
the ti (i = 1, . . . . q) are absent from the relation (l-3), and if the 
time t does not enter explicitly in the functions f, and vyk, then the 
equations of the problem have a first integral 

H = h = const (2.20) 

l’he multipliers h,(t) can have discontinuities; the function H will 
be continuous in the entire interval to< t <T. 

3. Necessary condition of Weierstrass. In the solution of the 
optimization problem of control processes, use is also made of the neces- 
sary condition of Weierstrass for a strict minims of the functional J 
in addition to the condition of stationary state. 

The proof of Weierstrass' condition is analogous to the one given in 
[61. It will not be given here. 

We shall need a generalization of the concept of normal state of a 
curve E which makes the functional J a minimum. 

Here a curve is said to be normal if on it the determinant 

8% 
i 1 (76, (z=1,...,p;a=1,...,pf 

is different from zera. This determinant is formed for the (p + l)-para- 
meter family of comparison curves used for the establishment of the 
necessary condition of Weierstrass for a strict minimum different from 
zero. 

We shall assume that the curve E satisfies the necessary condition of 

Weierstrass for a strict minimum of the functional J, if on it there are 
satisfied the equations (l.l), (1.2) and the condition of stationary 

state with the multipliers A,(t), pk(t) and pz, and if the inequality 

E>O (3.4) 

holds for these multipl_iers at each point of the curve for all possible 
admissible quantities xS, uk # f,, uk, connected by the equations (1.1) 
and (1.2). 

Any normal curve E which yields a minimum of the functional J satis- 
fies the necessary condition of Weierstrass. 

The Weierstrass function E which occurs in the inequality (3.1) is de- 

termined by the formula 
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E = L (5,8, u, h, p, t) 
%L - 

- L 1% 2, % A, p, 1) - c r=l z (Xs - &) (3.2) 
.¶ 

in which x6 and uk correspond to the curve which yields a minimum for J, 
while x, and uk are arbitrary actnissible functions. 

‘lhe relation (3.2) shows that the Weierstrass function E, as well as 

the function L, can have discontinuities of the first kind. Hence at :..he 

points of such discontinuities the inequality (3.1) has to be verified 

twice, once for the left side limit and once for the right side limits 

of the function E. 

‘Ihe substitution of the expression (2.2) into the relation (3.2) 

yields the formula 

If one takes into consideration the identity H,, s 0, the inequality 

(3.1) can be expressed in the form 

Hx (x1, . . . , xn, ul, . . . , %, A,, l . . , Ata, t) > 
>HA(x~,. . . ,x,,n, u,,.. . , Urn,&,. . . v&t) (3.4) 

‘lhis inequality is customarily used in solving problems of the 

optimization of controls. 

‘lhe inequality (3.4) shows that the control parameters, which corre- 

spond to the optimum operating conditions, yield a maximum to the func- 

tion HA. Hence, the Weierstrass condition necessary for a strict minimum 

of the functional J can be formulated in this problem in a form that is 

analogous to the principle of a maximum LlI. 

4. Example. Tbe problem on the accumulation of periodic disturbances. 
As an example of the application of the described methods let us consider 
the following problem on the accumulation of periodic disturbances in a 
linear system with one degree of freedom 171. 

We are given the second order equation 

ii+ Zn;+k%=u (4.1) 

where u(t) is the external disturbance satisfying the inequality 

I 24 (6 I B u+ (4.2) 

It is required to find in the set of all functions u(t), of period To, 
which satisfy the condition (4.2), a function which will assign a maximum 
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to the function x(t) in the stabilized state. 

Let us introduce the notation 

x1 = 2, 22 = z (4.3) 

and let us rewrite the equation (4.1) in the form 

g1 = & - zg = 0, g, = & + l&t + 2n2, - IL = 0 (4.4) 

Next we construct the relation 

J, = ua + va - (u*J~ = 0 (4.5) 

which accomplishes the transition to the open region of the ranges of 
u(t) and v(t). Let us next introduce the periodicity 

‘pl = 21 (to) = 0, cpa = 21 (T) = 0, cps = 5 (to) - 5 (0 = 0 (4.6) 

and the relation 

tp*=T-t@--To=O (4&7) 

which shows that the period is fixed. 

The necessary condition for an extremum of xl(t) takes the form 

cps = =z (a = 0 (4.8) 

The functional J can be written in the form 

J = - Xl (tl) 

The problem on the accumulation of the disturbances can be formulated 

in the following WW. 

One finds the functions which will make the functional (4.9) a minimum. 
These functions are found in the set of continuous functions xl(t) and 
x2(t) with a piece-wise continuous derivative i2( t), and from the piece- 
wise continuous disturbances u(t) satisfying in the interval to < t < T 

the equations (4.4) and (4.5), at its ends the relations (4.6) and (4.71, 
and at the point t = tl, the relation (4.8). 

In this form, this problem is a particular case of the one considered 
in the preceding sections. In solving it, one can make use of all the 
results established above. 

Let us construct the functions H and ‘p. On the basis of the formul.aS 
(2.3) and (2.4) we have the following expressions for these functions 

H=H,+ H, = hlzp + ha [ - k%, - 2nzs + u] + p [ ue + va - (U *)2] (4.10) 
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cp= - zl(tl)+ p5I2(f1)+ plZl(to)+ pzrl(T) + pS [z2(fO)-rZ tT)l+ P4(T-t0-‘O) (4’ii) 

With the aid of the relations (2.18) we construct the equations 

x, = k%z, ‘ha = - II + 2nh2, hz + 2Pu = 0, 2PV = 0 (4.12) 

Making use of the relations (2.14) and (2.15), we obtain the end con- 

ditions 

Xl PO) = PI, hl P’) =-pa, hz(lo) = pa, h2V) = ~2, (H,),ti = (HA)= = ~4 (4.13) 

The equations (2.16) lead to the following Erdmann-Weierstrass condi- 

tions: 

h1- (h) - Al+ (h) = 1, ha- (h) -X2+ (11) = - p5.1 (HA-)~,- (Hh+)tl = 0 (4.14) 

For the point of discontinuity t = t l the function u(t) will satisfy 

the equations 

h1-(t*)-kl+(t*)=o, k,-(P)- h2+ (t*) = 0, (HA+- (HA+&. = 0 (4.15) 

If the discontinuity of the control parameter occurs at the point 

t = t1*, where the relation (4.8) is satisfied, then one has to use the 

conditions (4.14). 

The inequality (3.4) yields 

i2u,,?b2u (4.16) 

Hence, we obtain the following values for u(t): 

u (t) = U* for h2> 0, u(t)=-U* for h2<0 (4.17) 

The inequalities (4.12) and (4.17) show that the control u(t) takes 

on only the boundary values u(t) = * II* at almost all points of the 

interval t0 d t < T. The exceptions are the finite number of points t= t* 

at which A,( t*) = 0. 

On the basis of the relation (4.15) we see that the functions h,(t), 

h, ( t) , and H are continuous at t = t*. The multiplier Al(t) has a dis- 

continuity at the point t = tl. This is revealed by the first relation 

of (4.14). The second one of these conditions shows that the multiplier 

h,(t) can also have a discontinuity at this point. The function H will 

be continuous at this point. 

The condition on the continuity of the function H at the point t = tl 
leads to the relation 
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k- @l) _ u+ (fr) - k%,+ (i,) 

J.2’ 01) u- (11) - k2q- (t,) 
(4.18) 

In case T,, >, T1 = 2r/kl, kl* = k2 - n* and k > n, one can find a func- 
tion u(t) which will satisfy the inequality 

‘max < k’zlmox 

Here, umeX and x1 .aI 
represent the largest values of u(t) and xl(t). 

An example of this is the harmonic [81 disturbance u(t) = uW.x sin at. 
Hence, if To > T1, this inequality will be satisfied also by the optimal 
control. Therefore, the multiplier h*(t) will not change sign at the 
point t = tl. In this case, the control paraneter will be continuous at 
the point t = tl, as is shown by the formula (4.17). On the basis of 
formula (4.18) we find that the multiplier h*(t) is continuous at this 
point. 

Blieinating the multiplier h,(t) from the relation (4. II), we obtain 
the following second order differential equation 

(4.19) 

Its solution, satisfying the conditions (4.13). has the form 

b = Ce”’ sin (kit + a) 

Here, a is determined by the formula 

(4.20) 

t8Ua= 
pT, sin klTo 

i - enT* cos klTo 
(4.21) 

It is constructed with the aid of the relation A, ( $1 = A#‘), which 
is obtained from the seoond pair of the equations (4.13). 

In the “resonance” case, Ta = Tl, we find, on the b8sis of (4. ZO), 

that tan a = 0. Setting a = 0, we obtain 

&, (t) dTent sin kll 

Then, 

u(t)=U* (0 < t < k)t 
The value a = T corresponds to 

x1( t) in the interval te d t < T. 

u (f) = - u* ($3 <Z) (4.22) 

the second extrenum of the function 
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When To = iTI, one finds again that tan a = 0. For the values a = jw 

(j = 0. 1, . ..). which are solutions of this equation, one finds control 
conditions which lead ultimately to the “resonance” case To = Tr. Differ- 
ent values of a correspond to different points of the ertremum of the 
function x1( t) in the interval to Q t < 7’. 

When TO < T1 one has to consider all the equations and conditions of 
the variational problem. 

In conclusion the author thanks A.I. Lur’e for the attention he has 
given this work. 
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